45 pages • 1 hour read
Summary
Background
Chapter Summaries & Analyses
Key Figures
Themes
Index of Terms
Important Quotes
Essay Topics
Tools
Hardy argued that mathematics exists as a separate reality and that discoveries about math are merely observations of that reality through the use of thought. He used analytic geometry (which he called “real” geometry) as an example. Analytic geometry uses graphs—formally, Cartesian coordinate systems—to study geometric forms. It’s the type of geometry most familiar to the public, the one used by engineers when they calculate orbits or build bridges. The lines, circles, triangles, and other geometric elements are drawn on a graph, and their lengths are precisely determined by the graph’s coordinates, usually the horizontal X, or abscissa, line and the vertical Y, or ordinate, line.
Although analytic geometry is highly useful in the real world, Hardy pointed out that its theorems are entirely independent of physical reality. As an example, he noted that if a drawing of a triangle is badly executed or distorted in some way, the principles that underlie the drawing remain unchanged.
Played with balls and bats, cricket is an English game that has become popular the world over. Vaguely similar to baseball, cricket includes a bowler who tries to knock the top off one of a “wicket” defended by a batter who tries to hit the ball deep into the outfield and score “runs” by running between his wicket and another one 20 meters away.
Plus, gain access to 8,550+ more expert-written Study Guides.
Including features:
Aging
View Collection
Beauty
View Collection
Books About Art
View Collection
Business & Economics
View Collection
Essays & Speeches
View Collection
Inspiring Biographies
View Collection
Memoir
View Collection
Memorial Day Reads
View Collection
Military Reads
View Collection
National Suicide Prevention Month
View Collection
Philosophy, Logic, & Ethics
View Collection
Science & Nature
View Collection